Some 10 billion years ago, the Milky Way merged with a large galaxy. The stars from this partner, named Gaia-Enceladus, make up most of the Milky Way's halo and also shaped its thick disk, giving it its inflated form. A description of this mega-merger, discovered by an international team led by University of Groningen astronomer Amina Helmi, is now published in the scientific journal Nature.
Large galaxies like our Milky Way are the result of mergers of smaller galaxies. An outstanding question is whether a galaxy like the Milky Way is the product of many small mergers or of a few large ones. The University of Groningen's Professor of Astronomy, Amina Helmi has spent most of her career looking for 'fossils' in the Milky Way that might offer some hints as to its evolution. She uses the chemical composition, position and trajectory of stars in the halo to deduce their history, and thereby to identify the mergers that created the early Milky Way.
The chemical signature of many halo stars was clearly different from the 'native' Milky Way stars. "And they are a fairly homogenous group, which indicates they share a common origin." By plotting both trajectory and chemical signature, the 'invaders' stood out clearly. Helmi says, "The youngest stars from Gaia-Enceladus are actually younger than the native Milky Way stars in what is now the thick disk region. This means that the progenitor of this thick disk was already present when the fusion happened, and Gaia-Enceladus, because of its large size, shook it and puffed it up."
The data on kinematics, chemistry, age and spatial distribution from the native Milky Way stars and the remnants of Gaia-Enceladus reminded Helmi of simulations performed by a former Ph.D. student, some 10 years ago. His simulations of the merging of a large disc-shaped galaxy with the young Milky Way produced a distribution of stars from both objects, which is totally in line with the Gaia data. "It was amazing to look at the new Gaia data and realize that I had seen it before," says the astronomer.
Also Read:- A Hybrid Material That Leads To A Cheaper And More Effective Way To Store Methane